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’ INTRODUCTION

One of the most exciting questions in modern science is the
prediction of processes or unknown parameters of complex
systems. Pharmacology is such a complex system. Predicting
effect profiles (EPs) of drugs and drug candidates is a great
challenge, which may be improved using their atomic-level
structural data. The EP of a drug is a complex feature since a
molecule entering the organism usually interacts with multiple
targets, as indicated by the theory of polypharmacology.1�4

Multiple actions may be important for clinical efficacy, especially
in the case of complex diseases. For example, psychiatric drugs
affecting several well-defined proteins have high efficacy.5 Thus,
single target-based approaches may prove insufficient for identi-
fying the full spectrum of EP of molecules.4 In addition,
considering that our knowledge is limited even for routinely
used drugs, the discovery of new effects frequently leads to new
indications for existing drugs. Some typical examples include
sildenafil, originally an antianginal agent which was repositioned
to the treatment of male erectile dysfunction, or topiramate, a
former antiepileptic agent, recently approved for treatment of
obesity.6 In a similar manner, the introduction of new com-
pounds frequently reveals unpredicted side effects. Thus, it is
becoming increasingly recognized that the prediction of the full
EP is essential to revealing the mechanisms of drug actions and
side effects.7 Up until now, heuristic and empirical experiences
have played the principal role in identifying various effects of

bioactive molecules. Recently developed systematic prediction
methods, however, increase the efficiency of drug development
and safety control. For example, Keiser et al. related drug targets
to each other on the basis of chemical similarity measurements of
their ligands8 and predicted new targets for existing drugs and
proved 23 new drug-target associations.9 Campillos et al. used
side effect information to determine the possibility of two drugs
sharing the same target,10 resulting in 13 confirmed interactions
out of 20 predictions. Kauvar et al. measured the binding
potencies of several compounds against a reference panel of
eight (in a later work, 18) proteins that defines the affinity
fingerprints of the applied compounds in order to predict the
binding properties of the compounds to other proteins not
represented in this reference panel.11,12 Fliri et al., building on
the pioneering work of Kauvar et al., found a weak relationship
between affinity fingerprints and the side effect data of drug
molecules.13 Bender et al. introduced the “Bayes Affinity Finger-
print” similarity search approach, in which compound similarity
is determined by similarities of binding affinity values against a
panel of pharmacological target proteins, and proved its superior
performance over conventional structural similarity searches.14,15

Our working hypothesis was that a feature set must comprise
similar complexity to that of clinical effect profiles in order to
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ABSTRACT: Most drugs exert their effects via multitarget
interactions, as hypothesized by polypharmacology.While these
multitarget interactions are responsible for the clinical effect
profiles of drugs, current methods have failed to uncover the
complex relationships between them. Here, we introduce an
approach which is able to relate complex drug�protein inter-
action profiles with effect profiles. Structural data and registered
effect profiles of all small-molecule drugs were collected, and
interactions to a series of nontarget protein binding sites of each
drug were calculated. Statistical analyses confirmed a close
relationship between the studied 177 major effect categories and interaction profiles of ca. 1200 FDA-approved small-molecule
drugs. On the basis of this relationship, the effect profiles of drugs were revealed in their entirety, and hitherto uncovered effects
could be predicted in a systematic manner. Our results show that the prediction power is independent of the composition of the
protein set used for interaction profile generation.
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yield systematic information with predictive power for the effect
profiles.4 The task was to extract the relevant information stored
in complex feature sets of drug molecules in order to unravel
effect profiles in their entirety. To accomplish this, in the present
study, an atomic-level strategy is introduced for the prediction of
the effect profiles of drugs by systematic mapping of their
molecular interactions. For this, the central assumption of
polypharmacology is adopted, and it is presumed that similar
interaction profiles (IPs) of molecules are related to their similar
biological actions. In order to test this assumption empirically, we
generated IPs for 1177 FDA-approved drugs by calculating their
binding affinities for a set of proteins, and the IPs were correlated
with the EPs of all drugs. A correlation between IPs and EPs
would hold out the promise for the discovery of novel effects of
drugs and the prediction of side effects of drug candidates in the
development phase. The aims of the present study are (1) to
uncover IP�EP relationships and (2) to derive general rules for
effect prediction.

’METHODS

Generation of the Interaction Profile (IP) Matrix. IP gen-
eration was done as described in our previous work.16 In short,
1226 FDA-approved drug molecules were extracted from
DrugBank database17 as of June 2009 (Table S1, Supporting
Information). A total of 49 entries were removed for various
reasons (e.g., structure contains a metal ion, two components
under one name, etc.); 149 proteins were collected from RCSB
Protein Data Bank18 (PDB), which met the following re-
quirements:
(1) The structure contained a ligand.
(2) The resolution was better than 2.3 Å.
(3) There was a complete ligand binding site.
(4) If a mutant protein had been selected, the amino acid

sequence was not changed in the binding pocket, and
fewer than five mutations were in other regions.

(5) Water molecules were not involved in the ligand binding.
Table S2 (Supporting Information) shows the list of the PDB

codes of the applied proteins. Docking preparations and calcula-
tions were performed using the DOVIS 2.0 software (DOcking-
based VIrtual Screening),19 using the AutoDock4 docking
engine,20 the Lamarckian genetic algorithm and X-SCORE,21

and AutoDock4 scoring functions. Docking runs were repeated
using the AutoDock4 scoring function to assess the impact of
different scoring functions on the results, and the same analysis
procedure was further applied to them. Explicit hydrogens were
added to the drug molecules, and optimization procedures were
applied for aromatic rings and for the overall 3D structure before
docking using the ChemAxon JChem Base software (version
5.2.0, 2008). All ligands and other molecules were removed
during the preparation of the protein PDB file. The docking box
was centered on the geometrical center of the original ligand of
the protein (as found in the intact PDB file); the box size and grid
spacing were set to 22.5 Å and 0.375 Å, respectively. Protein parts
outside the box were excluded from the calculations. The applied
box size enables each member of the drug set to rotate freely in
order to find the conformation with the lowest binding free
energy without steric clashing with the box perimeter. No further
reductions in box size were applied to smaller ligands. Protein
structures were kept rigid during docking according to our initial
hypothesis that a uniform, constant discriminative surface is
required for creating interaction profiles.

Twenty-five docking runs were performed for each job on a
Hewlett-Packard cluster of 104 CPUs. Each drug molecule was
docked to each protein (1177 � 149 = 175 373 dockings,
individual docking runs: 175 373 � 25 = 4 384 325). Binding
free energies were extracted, and the minima were imported to
the IP database (Figure 1). Here, drugs are ordered in rows, and
the columns represent the individual proteins. This way, each
row forms the interaction profile for the given drug.
Diversity Analysis.We assume that an IP vector with a diverse

set of proteins used in the present study might model the
interactions formed by a given drug with the human proteome.
To check this assumption, the diversity of the protein set was
calculated from the similarity values of the binding site geometry
descriptors obtained from the PocketPicker software.22 A total of
95.5% of the values in the protein�protein dissimilarity half-
matrix are above the dissimilarity threshold,22 suggesting a fairly
diverse set of proteins.
Protein Set Size Evaluation. An evaluation procedure was

applied on different protein set sizes in order to determine

Figure 1. Graphical summary of the Drug Profile Matching method:
from the atomic structures to the effect probability matrix. A drug
molecule is docked to a set of 149 proteins, and the calculated binding
free energies (docking scores, DS1-149) are entered into a row vector,
i.e., the interaction profile (IP). IPs of the 1177 studied drugs form the IP
matrix. The effect pattern (EP) matrix contains the therapeutic effects of
the drugs in a binary coded form (blue and white cells represent the
presence and the absence of a given effect from the 177 categories,
respectively). Then, a canonical correlation analysis is performed in order to
generate highly correlating factor pairs that serve as the input for linear
discriminant analysis.Thisway, classification functions are produced that yield
the probability for each drug�effect pair, resulting in the effect probability
matrix. Note that the values in this matrix are continuous. See the text and
Supporting Information for details of the Drug Profile Matching method.
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the required number of proteins for efficient classification.
Randomly generated protein sets containing 1, 5, 10, 40, 70,
100, and 130 proteins were used to produce the IPs of the
drugs. Then, the DPM method was performed effect by effect,
as described in the following sections, and the resulting
classification accuracy values (AUCs) were extracted. Each
protein set was generated three times. The following hyper-
bolic function was fitted to the mean AUC values at the seven
set sizes for each effect:

y ¼ a� x
b þ x

þ c

Themaximum obtainable AUC equals a + c, while parameter b
is the number of proteins required to reach 50% of the maximal
obtainable AUC.
Generation of Effect Profile (EP) Matrix. As mentioned

above, structural and pharmacological information on 1177
FDA-approved small-molecule drugs was extracted from the
DrugBank database.17 Then, a list of 559 effects was formed that
contained all effect entries that appeared in the drug informa-
tion. Effect entries were further refined in order to eliminate
initial database inconsistencies. Since effect categories with less
than 10 registered drugs contain an insufficient amount of
information for meaningful classification, the effect list was
reduced to 177 categories. Figure S1 (Supporting Information)
shows the distribution of the number of drugs registered to an
effect. Then, a binary matrix was formed that shows the
presence or absence of the studied 177 effects for each drug.
(The appearance of an effect for a drug is marked with a “1”
value and vice versa.)
Statistical Analyses. Canonical Correlation Analysis. In order

to match the complex pattern structures of IP and EP matrices,
we adopted canonical correlation analysis (CCA). CCA is a
“bimultivariate” method that has the advantage of simultaneous
handling of two separate sets of variables, which we had in our
study (i.e., IP and EP descriptor variables, respectively). In CCA,
the relationship between the two sets is studied by creating
derived variables (“variates”) that are linear composites of the
original variables. The principal goal is to simplify complex
relationships, while providing some specific insights into the
underlying structure of the data. An analogy to factor analysis, a
more familiar method, may be helpful in explaining CCA. In
factor analysis, variates (factors) are formed from one set of
variables to describe the correlation structure in the same set of
variables. In CCA, variates in one set are formed to describe the
correlation structure in a different set of variables. Therefore,
CCA can be viewed as an extension of factor analysis for two
separate sets of variables. In particular, the objective of this
method is to obtain as high a correlation as possible between the
derived variables (here, pairs of variates or “factors” are formed
from the two sets) in variable set 1 (i.e., set of IPs in current
study) and those in variable set 2 (i.e., set of EPs in current
study). In other words, this technique is an optimal linearmethod
for studying interset association: canonical factor pairs from the
two sets are extracted jointly to be maximally correlated with a
component of the complementary variable set (Figure S3,
Supporting Information).
Linear Discriminant Analysis. On the basis of the above-

described canonical factor pairs of IPs and EPs, we calculated
the probability of each effect for each drug via linear discrimi-
nant analysis (LDA; Figure S2, Supporting Information). In
particular, LDA is a classical statistical approach to finding an

optimal linear transformation for maximizing the between-class
variance and minimizing the within-class variance, thereby
identifying the best discriminating surfaces or “hyperplanes”
in the multidimensional space of feature sets that generate
complex pattern classes (such as the interaction profile of drugs
at the atomic level, or IPs, in our study). Using the mathematical
equation of such discriminating surfaces, classification func-
tions for each effect were determined in order to classify obser-
vations into known effect classes based on their IP canonical
factors. The performance of the classification function was
evaluated by estimating the drug effect probability for each
drug with regard to each effect and the rate of correct
classification for all drugs with regard to all effects. In order to
accomplish this, each observed IP was plugged into the classi-
fication function in order to generate the drug�effect probability
matrix (Figure 1).

Figure 2. (A) Representative ROC curves. The ROC curve provides a
characterization of classification accuracy; here, ROCs of the “tetra-
cycline” (best classification), “ACE inhibitor”, “COX inhibitor”, and
“antineoplastic agent” (our most inefficient classification) effect
categories are shown (dotted, dashed, dash-dotted, and short-dotted
lines, respectively). The gray diagonal line represents classification
based on random guess. The inset shows an enlarged portion of the
upper left region of the plot. (B) AUC histogram, showing the
distribution of the area under the curve (AUC) values for the studied
177 effects. Results suggest that near-perfect classification was ob-
tained in most cases. (C) Distribution of the BEDROC values for the
177 studied effect categories.
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The Statistical Analysis System forWindows (version 9.2; SAS
Institute, Cary, NC) was used for the implementation of all
statistical analyses, including CCA (CANCORR Procedure) as
well as LDA (DISCRIM Procedure).
Validation. In order to evaluate the robustness of our results,

i.e., the extent to which the aforementioned effect classification
results would generalize to independent data, the commonly
used 10-fold cross-validation was performed (Figure 3A).
It partitions the data into 10 complementary sets (also called
“folds”). Each fold is retained as a test set for validation, and the
remaining folds are used as a training set for the establishment
of the classification model. When the standard 10-fold cross-
validation approach was adopted in this study, the data set was
divided into 10 complementary folds. In each round of valida-
tion, one fold was set as a test set, and the remaining folds
comprised the training set. CCA and LDA were conducted to
derive the IP-based classification function using the training set
and computing the drug�effect probability as well as deter-
mining (predicting) effect�group membership for the test set.
This round was performed for each of the 10 folds, and the
cross-validation results for each of the originally registered
drugs were then combined to yield a single average estimate for
each effect (mean probability value, MPV). The whole process
was repeated 100 times.
A more rigorous 3-fold cross-validation was also performed to

prove the robustness of the method.
Receiver Operating Characteristic Analysis. The efficacy of

the classification functions was assessed by Receiver Operating
Characteristic (ROC) analysis, i.e., determining the true posi-
tive rate (TPR) and the false positive rate (FPR) for every
effect, using the classification function (determined by LDA)
and a sliding cutoff parameter running from 1 to 0. Molecules
are reclassified at each point, considering compounds as
“positive” if they have a greater possibility for an effect than
the actual cutoff value and “negative” in the opposite case.
Positives can be further divided into true and false positives
depending on the binary value originally assigned to the given
drug�effect pair; i.e., if a drug had “1” in the effect profile and
produced a classification value larger than the cutoff point, it
will be considered a “true positive”. True and false negatives can
be distinguished as well at each step. TPR and FPR are the rate
of true positives among the positives and the rate of false
positives among the negatives, respectively, and are often
referred to as sensitivity and 1�specificity. TPR and FPR values
for each cutoff point are plotted on a two-dimensional graph
called the ROC curve (Figure 2A). A completely random
classification would result in a ROC curve on the diagonal of
the graph, meaning that for every true positive hit, a false
positive hit also falls into the classification. The better the
classification, the closer the curve to the (0,1) point of the
graph. Classification accuracy can be characterized by the area
under the ROC curve, i.e., the AUC value (ranging from 0 to 1).
Boltzmann-Enhanced Discrimination of ROC.AUC is proved

to be a useful metric in many disciplines; however, it does
not address the “early recognition” problem specific to virtual
screening. Virtual screening methods must rank actives early
in an ordered list, since the number of compounds to be
tested is generally limited. The Boltzmann enhanced discri-
mination of ROC (BEDROC) metric uses an exponential
weight formula that gives bigger scores to the actives ap-
pearing at the top of the list.23 Similarly to the AUC value,
BEDROC also ranges from 0 to 1, and a higher value means

better classification in terms of “early recognition”.

BEDROC ¼
∑
n

i¼ 1
e�αri=N

n
N

1� e�α

eα=N � 1

 !� Ra sinhðα=2Þ
coshðα=2Þ � coshðα=2� αRaÞ

þ 1

1� eαð1 � RaÞ if αRa , 1 and α 6¼ 0

where ri is the rank of the ith active in an ordered list, N is the
number of total compounds, n is the number of actives, Ra is
the ratio of actives (n/N), and α is the tuning parameter. The
higher the values of α, the “earlier” the region of the ordered
list that is emphasized by higher weighting. α = 5 was used in
our calculations; this value corresponds to 80% of the score
coming from approximately the top 30% of the list.
Top Hit Rate Calculation.The entire set of the 1177 drugs was

listed in descending order by the probability value of possessing
the given effect, and the top of the listwas cut at the number of the
registered drugs to the studied effect. This top list contains
registered and unregistered drugs of the given effect since the
unregistered drugs can also gain a high probability value in the
Drug Profile Matching method and registered drugs can have a
low value.
Classification accuracy can be characterized with the propor-

tion of the registered drugs in the top list. Therefore, the
following top hit rate value was calculated for each of the 177
effects:

top hit rate ¼ number of the registered drugs in the top of the list
number of all registered drugs of the given effect

Here, the number of all registered drugs of the given effect equals
the number of drugs in the top list, as discussed above. The distri-
bution of top hit rates can be found in Figure S3 (Supporting
Information).

’RESULTS AND DISCUSSION

EPs and IPs were generated on the basis of structural and
pharmacological information on 1177 FDA-approved small-
molecule drugs (Figure 1 and Table S1, Supporting Infor-
mation). EPs were extracted from the DrugBank database17 and
stored as a row vector for each drug with binary entries, i.e., “1”
for the presence and “0” for the absence of a given effect,
comprising 177 effect categories. For the IPs, a diverse set of
149 proteins were selected from the Protein Data Bank (Table
S2, Supporting Information) on the basis of their suitability for
docking studies. Structures of the 1177 � 149 drug�protein
complexes were obtained using the popular docking software
AutoDock4.20,24 The corresponding binding affinity values
were calculated using X-SCORE and Autodock4 scoring func-
tions19�21 as described earlier,16 and the binding affinity values
were entered into the IP vectors as recommended by an earlier
study.25 The EP and IP vectors were collected into matrices
and used as input databases in the subsequent investigations
(Figure 1).

The evaluation of the relationship between IP and EP is a
cornerstone of our approach called Drug Profile Matching
(DPM) method (Figure 1). In order to match the complex
pattern structures, canonical correlations were applied between
the IP matrix and each studied effect category, and the basic
underlying factor pairs that show maximal correlation between
the two data sets were identified. Using these IP and EP factor
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Table 1. Prediction and Validation Properties of the Studied 177 Effect Categoriesa

accuracy 10-fold cross-validation probability values

effect n AUC BEDROC top hit rate mean std mean 75% std 75%

adrenergic agent 132 0.9186 0.8091 0.6136 0.6157 0.0080 0.7750 0.0095

adrenergic agonist 38 0.9677 0.8963 0.6053 0.5579 0.0203 0.7292 0.0263

adrenergic α agonist 20 0.9904 0.9597 0.7000 0.5163 0.0476 0.6883 0.0634

adrenergic α antagonist 27 0.9806 0.9227 0.6667 0.3704 0.0307 0.4728 0.0390

adrenergic antagonist 61 0.9521 0.8567 0.5738 0.5984 0.0110 0.7643 0.0124

adrenergic β agonist 17 0.9953 0.9791 0.7647 0.7177 0.0364 0.9203 0.0396

adrenergic β antagonist 23 0.9905 0.9612 0.8261 0.7170 0.0188 0.9048 0.0219

adrenergic uptake inhibitor 19 0.9901 0.9559 0.6842 0.4366 0.0435 0.5529 0.0551

alkylating agent 17 0.9781 0.9287 0.6471 0.2225 0.0300 0.2909 0.0392

amphetamine 16 0.9928 0.9675 0.6875 0.6197 0.0185 0.8263 0.0247

analgesic agent 92 0.8966 0.7669 0.5652 0.5449 0.0119 0.7106 0.0153

analgesic agent, opioid 23 0.9900 0.9562 0.6957 0.5423 0.0220 0.6929 0.0281

analgesic agent, non-narcotic 12 0.9839 0.9331 0.6667 0.0614 0.0232 0.0819 0.0309

anesthetic agent 41 0.9661 0.8724 0.4878 0.4456 0.0206 0.5776 0.0262

anesthetic agent, intravenous 12 0.9956 0.9802 0.7500 0.0925 0.0389 0.1232 0.0518

anesthetic agent, local 25 0.9747 0.9242 0.6400 0.5254 0.0300 0.6807 0.0376

angiotensin-converting enzyme inhibitor 15 0.9986 0.9933 0.8000 0.4197 0.0426 0.5228 0.0525

anthelmintic agent 10 0.9959 0.9810 0.8000 0.0666 0.0535 0.0833 0.0669

antiallergic agent 63 0.9452 0.8369 0.5556 0.5591 0.0142 0.7198 0.0175

antianginal agent 21 0.9647 0.8739 0.5714 0.2661 0.0379 0.3492 0.0497

antianxiety agent 50 0.9269 0.8365 0.6400 0.5419 0.0146 0.7127 0.0191

antiarrhythmic agent 62 0.9216 0.8034 0.5161 0.4946 0.0143 0.6292 0.0174

antiasthmatic agent 31 0.9717 0.8887 0.5161 0.3810 0.0305 0.4899 0.0391

antibacterial agent 127 0.9557 0.9146 0.7638 0.7375 0.0091 0.9206 0.0084

antibiotic 132 0.9424 0.8753 0.7045 0.6903 0.0079 0.8919 0.0084

anticholesteremic agent 13 0.9959 0.9806 0.6923 0.3161 0.0472 0.4109 0.0614

anticoagulant 10 0.9921 0.9665 0.8000 0.2408 0.0843 0.3010 0.1053

anticonvulsant 60 0.9614 0.9022 0.6500 0.6175 0.0177 0.8123 0.0223

antidepressant 40 0.9570 0.8891 0.6750 0.5374 0.0237 0.7057 0.0299

antidepressant, second-generation 14 0.9768 0.9124 0.7143 0.2453 0.0451 0.3121 0.0573

antidyskinesia agent 26 0.9775 0.9096 0.5769 0.2861 0.0291 0.3704 0.0376

antiemetic agent 48 0.9354 0.7938 0.4375 0.5080 0.0184 0.6502 0.0225

antifungal agent 30 0.9796 0.9184 0.5667 0.3423 0.0310 0.4443 0.0401

antiglaucoma agent 23 0.9680 0.8831 0.6087 0.3360 0.0314 0.4291 0.0401

anti-HIV agent 24 0.9724 0.9077 0.6667 0.4184 0.0384 0.5578 0.0512

antihypertensive agent 112 0.8983 0.7521 0.5357 0.5209 0.0102 0.6630 0.0118

antihypocalcemic agent 12 0.9974 0.9876 0.6667 0.4648 0.0472 0.6197 0.0630

anti-infective agent 212 0.8524 0.7701 0.6132 0.5753 0.0057 0.7384 0.0067

anti-infective agent, local 11 0.9927 0.9659 0.5455 0.1833 0.0434 0.2240 0.0530

anti-infective agent, urinary 13 0.9884 0.9503 0.6923 0.2364 0.0278 0.3074 0.0362

anti-inflammatory agent 102 0.9103 0.8175 0.6176 0.6108 0.0089 0.7923 0.0106

antimalarial agent 18 0.9935 0.9705 0.7222 0.2411 0.0421 0.3096 0.0541

antimanic agent 12 0.9946 0.9758 0.6667 0.2026 0.0456 0.2701 0.0609

antimetabolite 30 0.9739 0.9047 0.6667 0.4735 0.0327 0.6176 0.0427

antimigraine agent 19 0.9535 0.8680 0.5263 0.2620 0.0259 0.3318 0.0328

antimuscarinic agent 33 0.9757 0.9026 0.5152 0.5840 0.0233 0.7404 0.0269

antineoplastic agent 113 0.8604 0.7048 0.4690 0.4475 0.0124 0.5756 0.0153

antineoplastic agent, alkylating 15 0.9766 0.9303 0.6667 0.2857 0.0413 0.3571 0.0516

antineoplastic agent, antimetabolite 14 0.9956 0.9799 0.7143 0.4700 0.0538 0.5982 0.0685

antineoplastic agent, hormonal 19 0.9865 0.9383 0.4737 0.3609 0.0342 0.4565 0.0431

antiobesity agent 12 0.9938 0.9706 0.5000 0.1789 0.0617 0.2386 0.0822

antioxidant 10 0.9901 0.9552 0.6000 0.0028 0.0041 0.0035 0.0051
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Table 1. Continued

accuracy 10-fold cross-validation probability values

effect n AUC BEDROC top hit rate mean std mean 75% std 75%

antiparkinson agent 30 0.9712 0.8973 0.6000 0.3574 0.0390 0.4635 0.0502

antiprotozoal agent 19 0.9597 0.8748 0.6316 0.1078 0.0384 0.1365 0.0486

antipruritic agent 41 0.9597 0.8790 0.5854 0.5120 0.0181 0.6680 0.0232

antipsychotic 45 0.9639 0.8747 0.5556 0.5776 0.0136 0.7553 0.0172

antipyretic 25 0.9873 0.9529 0.7600 0.6735 0.0266 0.8854 0.0348

antirheumatic agent 18 0.9874 0.9435 0.5556 0.1805 0.0258 0.2321 0.0332

antispasmodic agent 24 0.9610 0.8727 0.5417 0.4753 0.0237 0.6272 0.0310

antitussive 10 0.9941 0.9718 0.5000 0.4403 0.0556 0.5503 0.0695

antiulcer agent 23 0.9788 0.9276 0.6957 0.4788 0.0387 0.6086 0.0489

antiviral agent 45 0.9613 0.8864 0.5556 0.4837 0.0228 0.6373 0.0298

barbiturate 17 0.9998 0.9990 0.8824 0.9913 0.0133 1.0000 0.0000

benzimidazole 12 0.9905 0.9586 0.7500 0.4304 0.0720 0.5737 0.0959

benzodiazepine 25 0.9988 0.9946 0.9200 0.8712 0.0116 0.9999 0.0002

β-lactame antibiotic 56 0.9942 0.9782 0.8750 0.8337 0.0081 0.9961 0.0017

bone density conservation agent 17 0.9837 0.9425 0.6471 0.3985 0.0196 0.5211 0.0256

bronchodilator agent 29 0.9463 0.8367 0.5172 0.3779 0.0197 0.4976 0.0259

calcium channel agent 30 0.9602 0.8899 0.6000 0.3664 0.0281 0.4771 0.0365

calcium channel blocker 28 0.9659 0.9078 0.5714 0.3726 0.0328 0.4960 0.0437

carbohydrate derivative 20 0.9971 0.9867 0.8500 0.5605 0.0371 0.7473 0.0495

cardiotonic agent 14 0.9929 0.9685 0.7857 0.2297 0.0384 0.2924 0.0489

cardiovascular agent 19 0.9894 0.9536 0.6842 0.2954 0.0398 0.3741 0.0504

catecholamine 11 0.9994 0.9970 0.8182 0.7065 0.0571 0.8635 0.0697

cell wall synthesis inhibitor 58 0.9874 0.9600 0.8448 0.8066 0.0097 0.9913 0.0025

central nervous system agent 23 0.9632 0.8724 0.5217 0.3551 0.0215 0.4537 0.0275

central nervous system stimulant 12 0.9922 0.9632 0.5000 0.3344 0.0456 0.4458 0.0608

cephalosporin 32 0.9988 0.9947 0.9063 0.8546 0.0197 0.9874 0.0049

cholinergic agent 42 0.9664 0.8779 0.5476 0.5410 0.0164 0.6957 0.0204

cholinergic antagonist 37 0.9741 0.9007 0.5676 0.5935 0.0199 0.7698 0.0249

cholinesterase inhibitor 13 0.9960 0.9815 0.7692 0.2975 0.0423 0.3867 0.0550

contraceptive agent 13 0.9995 0.9975 0.9231 0.7958 0.0696 0.9553 0.0551

corticosteroid 31 0.9979 0.9903 0.9032 0.8939 0.0170 1.0000 0.0000

corticosteroid, topical 12 0.9971 0.9858 0.7500 0.7688 0.0564 0.9643 0.0430

cyclooxygenase inhibitor 37 0.9892 0.9569 0.8108 0.6931 0.0198 0.9026 0.0208

depressant 37 0.9302 0.8141 0.5405 0.4686 0.0159 0.6189 0.0209

dermatologic agent 16 0.9816 0.9338 0.6875 0.2510 0.0510 0.3344 0.0679

dihydropyridine 10 0.9991 0.9959 0.9000 0.5485 0.0601 0.6856 0.0751

diuretic 29 0.9508 0.8631 0.6552 0.4321 0.0285 0.5695 0.0375

dopamine agent 75 0.9220 0.7922 0.5467 0.5479 0.0109 0.7061 0.0135

dopamine agonist 11 0.9992 0.9962 0.8182 0.1151 0.0334 0.1407 0.0408

dopamine antagonist 45 0.9694 0.8919 0.5778 0.6150 0.0154 0.7942 0.0171

dopamine uptake inhibitor 13 0.9936 0.9697 0.6154 0.1696 0.0542 0.2205 0.0705

ergoline derivative 10 0.9998 0.9992 0.9000 0.6267 0.0440 0.7832 0.0550

ergosterol synthesis inhibitor 12 0.9968 0.9845 0.7500 0.1997 0.0487 0.2639 0.0644

estrogen 11 0.9996 0.9981 0.9091 0.6657 0.0518 0.8127 0.0628

ethanolamine derivative 33 0.9454 0.8295 0.5455 0.3308 0.0255 0.4344 0.0335

fluoroquinolone 12 1.0000 1.0000 1.0000 0.8334 0.0001 1.0000 0.0000

folic acid antagonist 19 0.9871 0.9491 0.7895 0.5675 0.0263 0.7187 0.0333

GABA agent 65 0.9761 0.9253 0.7692 0.6770 0.0156 0.8894 0.0191

gastrointestinal agent 12 0.9675 0.8793 0.6667 0.0549 0.0296 0.0732 0.0394

glucocorticoid 31 0.9979 0.9906 0.9032 0.9208 0.0107 0.9999 0.0001

glutamate receptor antagonist 18 0.9654 0.8847 0.6111 0.2730 0.0503 0.3510 0.0647

guanidine derivative 22 0.9813 0.9331 0.7273 0.4477 0.0284 0.5793 0.0367

histamine agent 73 0.9401 0.8619 0.6438 0.6528 0.0094 0.8370 0.0106
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Table 1. Continued

accuracy 10-fold cross-validation probability values

effect n AUC BEDROC top hit rate mean std mean 75% std 75%

histamine antagonist 71 0.9399 0.8613 0.6479 0.6659 0.0089 0.8462 0.0099

histamine H1 antagonist 49 0.9671 0.8999 0.6531 0.6505 0.0159 0.8293 0.0175

histamine H1 antagonist, nonsedating 10 0.9991 0.9954 0.8000 0.2928 0.0462 0.3659 0.0577

hormone replacement agent 11 0.9984 0.9925 0.8182 0.3007 0.0666 0.3674 0.0814

hypnotic and/or sedative 63 0.9456 0.8660 0.6984 0.6450 0.0099 0.8432 0.0127

hypoglycemic agent 22 0.9916 0.9631 0.7273 0.4212 0.0276 0.5428 0.0353

imidazole derivative 35 0.9480 0.8544 0.6000 0.4083 0.0240 0.5280 0.0309

immunosuppressive agent 28 0.9555 0.8653 0.6429 0.3290 0.0343 0.4385 0.0457

indole derivative 20 0.9856 0.9387 0.6500 0.2441 0.0333 0.3250 0.0443

muscarinic agent 36 0.9722 0.8888 0.5000 0.5397 0.0218 0.6983 0.0271

muscle relaxant 60 0.9355 0.8181 0.5833 0.4565 0.0140 0.6041 0.0186

muscle relaxant, central 13 0.9941 0.9729 0.6923 0.0636 0.0344 0.0826 0.0448

muscle relaxant, skeletal 35 0.9653 0.8863 0.6286 0.4685 0.0229 0.6072 0.0297

narcotic 22 0.9882 0.9493 0.6364 0.4914 0.0263 0.6359 0.0340

neuroprotective agent 13 0.9684 0.8827 0.4615 0.1309 0.0251 0.1701 0.0327

neurotransmitter uptake inhibitor 42 0.9495 0.8482 0.5714 0.5570 0.0179 0.7239 0.0226

nitro compound 26 0.9929 0.9703 0.8077 0.6340 0.0289 0.8207 0.0366

nonsteroidal anti-inflammatory agent 69 0.9306 0.8094 0.5652 0.5284 0.0122 0.6929 0.0157

norepinephrine reuptake inhibitor 15 0.9965 0.9841 0.8000 0.5640 0.0486 0.7042 0.0604

nucleic acid synthesis inhibitor 80 0.9097 0.8049 0.6250 0.5199 0.0150 0.6903 0.0199

nucleoside or nucleotide 22 0.9995 0.9978 0.9091 0.8197 0.0288 0.9905 0.0098

nucleoside or nucleotide analogue 13 0.9980 0.9903 0.7692 0.3849 0.0160 0.5004 0.0209

opiate agent 31 0.9865 0.9439 0.6452 0.5554 0.0182 0.7173 0.0236

opiate agonist 27 0.9899 0.9558 0.6296 0.5505 0.0241 0.7077 0.0310

opioid 22 0.9869 0.9486 0.7727 0.6335 0.0077 0.8198 0.0100

parasympatholytic 16 0.9743 0.9148 0.6875 0.6170 0.0395 0.8181 0.0515

parasympathomimetic 10 0.9985 0.9926 0.8000 0.2228 0.0711 0.2785 0.0889

penicillin 20 0.9999 0.9996 0.9500 0.7600 0.0433 0.9415 0.0280

phenothiazine 25 0.9958 0.9815 0.7600 0.8811 0.0194 0.9977 0.0018

phosphodiesterase inhibitor 16 0.9927 0.9682 0.6875 0.2308 0.0508 0.3076 0.0678

piperazine derivative 57 0.9766 0.9198 0.6842 0.6495 0.0148 0.8276 0.0164

piperidine derivative 66 0.9508 0.8533 0.6061 0.6133 0.0131 0.7686 0.0152

platelet aggregation inhibitor 16 0.9721 0.9037 0.4375 0.0688 0.0220 0.0916 0.0293

potassium channel agent 18 0.9903 0.9665 0.8889 0.4876 0.0420 0.6250 0.0537

potassium channel blocker 16 0.9850 0.9555 0.8750 0.5137 0.0538 0.6765 0.0691

progestin 12 0.9996 0.9983 0.8333 0.7847 0.0499 0.9731 0.0403

prostaglandin derivative 11 0.9991 0.9955 0.8182 0.5674 0.0576 0.6911 0.0693

protein synthesis inhibitor 32 0.9661 0.9076 0.7500 0.5700 0.0157 0.7598 0.0209

purine derivative 12 0.9981 0.9913 0.8333 0.6334 0.0598 0.8433 0.0788

pyridine derivative 49 0.9266 0.7866 0.4694 0.3310 0.0190 0.4265 0.0241

pyrimidine derivative 17 0.9807 0.9358 0.5882 0.1828 0.0372 0.2390 0.0486

quaternary amine 35 0.9569 0.8842 0.7143 0.4478 0.0296 0.5798 0.0384

quinoline derivative 14 0.9941 0.9745 0.8571 0.4334 0.0551 0.5513 0.0699

quinolone 15 0.9993 0.9955 0.9333 0.7475 0.0315 0.9287 0.0347

respiratory smooth muscle relaxant 14 0.9678 0.9102 0.6429 0.3013 0.0663 0.3835 0.0843

respiratory system agent 41 0.9048 0.7660 0.4634 0.4101 0.0183 0.5413 0.0241

reverse transcriptase inhibitor 14 0.9794 0.9280 0.7143 0.3283 0.0431 0.4178 0.0549

serotonin agent 63 0.9502 0.8412 0.5556 0.5888 0.0144 0.7396 0.0159

serotonin agonist 13 0.9968 0.9850 0.8462 0.3870 0.0495 0.5028 0.0642

serotonin antagonist 31 0.9699 0.9011 0.6774 0.5427 0.0283 0.6903 0.0352

serotonin reuptake inhibitor 21 0.9835 0.9326 0.6190 0.4327 0.0362 0.5649 0.0471

sodium channel blocker 39 0.9282 0.8119 0.5385 0.3807 0.0198 0.4899 0.0255

sodium chloride symporter inhibitor 13 0.9992 0.9962 0.7692 0.5746 0.0243 0.7470 0.0315
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pairs, we calculated the probability of each effect for each drug
based on the drug’s IP by linear discriminant analyses, yielding a
classification function for all effects. As shown in Figure 1, each
observed IP was plugged into the classification function in order
to generate the drug�effect probability matrix.

To quantitatively assess the potential clinical relevance of the
drug�effect probability values, we first examined the Receiver
Operating Characteristic (ROC) curves (Figure 2) and then
performed an independent cross-validation (Figure 3) of our
results. ROC analysis characterizes classification performance
in terms of sensitivity and specificity of drug�effect classifica-
tion (see the Supporting Information for the details). ROC
curves allow the fine-tuning of the detection threshold in order
to optimize for sensitivity and/or specificity. Classification
accuracy was characterized by the AUC and BEDROC values.
An AUC close to 1, i.e., a ROC that ascends rapidly, indicates
high-accuracy classification, while a random guess classification
would result in a diagonal ROC yielding an AUC value of 0.5
(see Figure 2A for selected examples). Figure 2B shows the
distribution of the AUCs for the entire effect set. A total of 84%
of the effects yielded an AUC value larger than 0.95, indicating
that an excellent classification was obtained (see Table 1 for
the complete list of the studied effects). From another perspec-
tive, an effect ROC curve is based upon a list of drugs ordered by
descending probability values, regardless of their FDA effect
registration. High classification accuracy is obtained if the
registered drugs of the given effect appear on the top of
the list. If we cut the list at the number of the registered drugs
to the given effect, we found that here, on average, 69% of
the registered drugs appear (Figure S1, Supporting Infor-
mation). If we consider this number, more than two-
thirds of the registered drugs are in the top 2.6% of the list,
since on average 32 out of 1177 drugs belong to an effect

(enrichment: 26.54). In order to assess the early recognition
problem and calculate a more rigorous measure for classifica-
tion accuracy, BEDROC scores were also determined at α = 5
(Table 1, Figure 2C). The results were similar to the previously
determined AUC values: the antineoplastic agent category re-
sulted in the worst but still considerable classification accuracy
values (AUC and BEDROC values were 0.860 and 0.705, respec-
tively). For 116 effects out of 177, BEDROC values are above
0.9, suggesting that the DPM method can overcome the early
recognition problem. High correlation (R2 = 0.962) was found
between AUC and BEDROC values, so the calculation of BED-
ROC values did not result in a substantially different conclusion
about the performance of our method.

To check the validity of the effect classification results from
Drug Profile Matching, an independent 10-fold cross-validation
was performed and repeated 100 times (Figure 3A). For each
effect, we calculated a mean probability value (MPV), i.e., the
mean of the calculated probabilities for each drug registered to
the given effect. Finally, the mean of the MPVs of the 100-times
repeated 10-fold cross-validation experiments were calculated
(Table 1). A high mean MPV indicates the method’s robustness
that is the resistance of the classification system against the loss of
information due to the removal of 10% of the molecule entries,
when the classification rules are established during the validation.
Figure 3B and C show themeans of theMPVs for the studied 177
effects and some selected examples. A total of 48.6% of the
studied effects are validated by a mean probability value larger
than 0.5. (Using a randomized EP list would result in an average
probability value of 0.027.) We observed for certain effects that a
small number of the registered compounds were validated
with low probability, which may reflect the existence of sub-
groups within the effect categories (Figure S4, Supporting
Information). Therefore, we also present the mean probability

Table 1. Continued

accuracy 10-fold cross-validation probability values

effect n AUC BEDROC top hit rate mean std mean 75% std 75%

steroidal 73 0.9976 0.9901 0.9178 0.8811 0.0061 0.9998 0.0001

steroidal anti-inflammatory agent 33 0.9991 0.9962 0.9697 0.9334 0.0158 1.0000 0.0000

stimulant 15 0.9900 0.9542 0.5333 0.2236 0.0493 0.2794 0.0616

sulfonamide 78 0.9535 0.8629 0.6282 0.6179 0.0123 0.7867 0.0145

sulfone 17 0.9736 0.9238 0.6471 0.1822 0.0395 0.2382 0.0517

sulfonylurea 11 0.9999 0.9996 0.9091 0.6053 0.0918 0.7388 0.1118

sympatholytic 23 0.9688 0.8940 0.5652 0.3894 0.0408 0.4971 0.0522

sympathomimetic 33 0.9744 0.9029 0.6364 0.5909 0.0133 0.7799 0.0176

tetracycline 10 1.0000 1.0000 1.0000 0.7350 0.0723 0.9065 0.0794

tetrazole derivative 20 0.9898 0.9606 0.8000 0.6422 0.0402 0.8545 0.0535

thiazide 12 0.9995 0.9976 0.9167 0.6056 0.0214 0.8075 0.0285

thiazole 22 0.9936 0.9730 0.8182 0.5156 0.0324 0.6654 0.0415

tocolytic agent 11 0.9888 0.9498 0.5455 0.3296 0.0572 0.4029 0.0699

triazole derivative 16 0.9596 0.8770 0.5625 0.2738 0.0298 0.3650 0.0397

tricyclic antidepressant 14 0.9979 0.9901 0.7857 0.6472 0.0473 0.8205 0.0591

trifluormethyl derivative 32 0.9607 0.8814 0.6563 0.4206 0.0245 0.5535 0.0316

vasoconstrictor 42 0.9495 0.8677 0.6190 0.5603 0.0154 0.7335 0.0200

vasodilator 77 0.8837 0.7389 0.5195 0.4491 0.0135 0.5780 0.0169

2-hydroxy-3-aminopropoxy derivative 21 0.9955 0.9797 0.8095 0.7216 0.0237 0.9373 0.0297
aThe first column (n) lists the number of registered drugs to the given effect. Accuracy (AUC, BEDROC, and top hit rate) and 10-fold cross-validation
results (mean and standard deviation of MPV and mean and standard deviation of the upper 75% MPV, respectively) are presented.
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values for the upper 75% of the drugs (Figure 3B,C). We found
that, applying this portion of the drugs, 67% of the effects have
a mean probability value above 0.5. We also performed a 3-fold
cross-validation which gave similar results: the mean and
standard deviation of the MPV values were 0.478 ( 0.031
and 0.419 ( 0.060 for the 10-fold and 3-fold cross-validation,
respectively, implying the robustness of the DPM method.

If we examine the mean probabilities of different effect cate-
gories, the highest values belong to effects based on a high
degree of structural similarity among their registered com-
pounds, as expected. For example, barbiturates, benzodiaze-
pines, and steroidal anti-inflammatory agents result in mean
probability values of 0.991, 0.871, and 0.933, respectively.
(These categories produce high AUC and BEDROC values as
well, see Table 1.)However, effect categories based on common
target proteins still show rather high mean probability values
(e.g., 0.693 and 0.615 for cyclooxygenase (COX) inhibitors
and dopamine antagonists, respectively), despite the fact that
these compounds share a low level of chemical similarity. In
these cases, the protein set used in the DPM method can be
considered as a surrogate creating panel for proteins that are not
included in the studied set, a similar phenomenon described
in ref 11. Finally, clinical effect categories encompassing an
extensive set of drugs with different mechanisms of action also
could be characterized by fairly high mean probability values
(e.g., 0.578, 0.537, and 0.521 for antipsychotics, antidepressants,
and antihypertensive agents, respectively; Figure 3C, Table 1).

Many of these categories raise difficulties in conventional pre-
diction approaches. However, they are of crucial practical impor-
tance; therefore, these results point to the strength of the DPM
method.

We also examined the effect of protein set size on the
classification accuracy. Protein sets containing 1, 5, 10, 40, 70,
100, and 130 randomly selected proteins were separated from
the complete protein set, and the DPM procedure was applied
to them, resulting in a series of effect AUC values for each
protein set size. Three independent runs were carried out at
each data point. The means and the standard deviations of the
resulted AUC values are displayed in Table S3 (except for
protein set sizes 1 and 5; Supporting Information). The low
values of the standard deviations suggest that the composition
of the sets does not affect the AUC values significantly. On the
other hand, the increasing number of the applied proteins
saturates the AUC values, i.e., the classification accuracy. On
the basis of a hyperbolic fitting to the means of the AUC values
of an effect at different protein sizes, the maximal obtainable
AUC (i.e., the maximum value of the extrapolated hyperbola)
and the number of proteins required to reach 90% of this level
of AUC can be calculated (Table S4, Supporting Information).
The theoretical limit of the AUC is 1.0; therefore it should be
noted that the maximal obtainable AUC is linked to a hypo-
thetic protein set of the same diversity as our basic 149-element
set. Figure 4A and B display two representative curve fits, while
Figure 4C shows the distribution of the number of required

Figure 3. (A) 10-fold cross-validation of a selected effect category. In the first step, the IP matrix and a selected effect are partitioned into 10 groups
(“folds”). One group is removed, and the rest are merged in order to produce a classification function on the remaining set of molecules. This function is
applied to calculate the classification probabilities of the drugs from the removed group. The same process is repeated for each fold and then performed
for each effect. Finally, the whole cross-validation procedure was repeated 100 times. (B) Means of mean probability values for the 177 studied effect
categories, obtained from 10-fold cross-validation. Dark dots refer to the mean MPVs of the whole set of drugs registered to the given effect; light gray
dots represent the upper 75%, i.e., the subset giving the best 75% calculated probability values. Standard deviations are also plotted. Using a randomized
EP list would result in an average probability value of 0.027. (C)MeanMPVs and standard deviations for some selected effect categories. Dark and light
gray bars represent the same values as for the previous panel. Abbreviations: anti-i. a., anti-inflammatory agent; ant., antagonist; antineopl. a.,
antineoplastic agent; antiasthm., antiasthmatic agent.



143 dx.doi.org/10.1021/ci2002022 |J. Chem. Inf. Model. 2012, 52, 134–145

Journal of Chemical Information and Modeling ARTICLE

proteins, yielding 90% of the calculated maximal obtainable
AUC for each effect category. For 176 of the studied 177
effects, the classification functions based on the complete
protein set are sufficient to reach 90% of the maximal obtain-
able AUC. The remaining one effect, antihypertensive agents
contain diverse subcategories with different mechanisms of
action. For most of the structural categories, IPs based on
12 proteins are sufficient for effective classification. Target-
focused and therapeutic categories also yielded generally low
protein size parameters (e.g., 16 and 23 for angiotensin-
converting enzyme inhibitors and antidepressants, respectively).
These values are comparable with the optimized reference
panel of 18 proteins for creating target surrogates described by
Kauvar et al.11 However, antianginal agents and nonsteroidal
anti-inflammatory agents require 65 and 100 proteins, respec-
tively. Therefore, we conclude that the relevant effect categories
can be appropriately classified with the original protein set used
for IP generation.

In order to exclude any artifacts that might originate from
the scoring method, we also studied the effect of the applied
scoring function on the results. The same analysis procedure
presented above was repeated using the AutoDock4 native
scoring function and Glide docking with GlideScore scoring,
and in all three cases the prediction power did not change
significantly (data not shown).

Using the resulting classification functions, probability values
were assigned for each drug�effect pair in our data set. For
many drugs, a number of unregistered effects were detected
with high probability. These “false positive” hits can be in-
dicative of hidden effects which potentially could be used for
new drug effect predictions. However, the overall high AUC
values make it difficult to judge the actual performance of the
DPM system for different therapeutic categories. Therefore, in
order to evaluate the predictive power of the DPMmethod for a
given effect category, one must consider the AUC/BEDROC
values and the MPVs as well. Effects that produce outstanding
values for all of these categories can be accepted as highly
predictable categories, e.g., adrenergic β antagonists and anti-
biotics (AUC/BEDROC/MPV values of 0.991/0.961//0.717,
0.942/0.875/0.690, respectively), as well as the structure-based
classes. High AUC/BEDROC values and medium MPVs suggest
medium reproducibility (e.g., cholinergic and muscarinic agents
with AUC/BEDROC/MPV values of 0.966/0.878/0.541 and
0.972/0.889/0.540, respectively), while low MPVs refer to
poorly reproducible effect categories with low predictive
power. Two typical examples are platelet aggregation inhibitors
and gastrointestinal agents (their MPVs are 0.069 and 0.055,
respectively). Themechanisms of actions within these groups are
too different for effective prediction; redistribution of the regis-
tered drugs can result in better classification in the future (see
Conclusions).

In sum, the Drug Profile Matching method is a robust and
highly accurate approach that calculates the EPs of drugs solely
on the basis of their complex binding properties. The obtained
AUC and mean probability values pinpoint the strong relation-
ship between EPs and IPs.

’CONCLUSIONS

Polypharmacology is a newly emerging approach which
reflects the high complexity of the mechanism of actions of
drugs. This aspect of pharmacology has not been fully exploited
in drug development. Consequently, the entire effect profiles of
drugs and drug candidates have remained unrevealed. We hypo-
thesized that complex molecular feature sets of drugs correlate
with the known part of EPs and may therefore provide predictive
power to reveal the entire EPs of drugs.

In the present study, we collected the structural data and
registered effect profiles of all small-molecule drugs. Interactions
with a series of nontarget protein sites of each drug were
calculated, and an IP matrix was constructed. Statistical analyses
unveiled a strong correlation between the EPs and IPs, and this
relationship was confirmed by independent validation. These
findings allowed us to develop a robust and systematic effect
prediction method, named Drug Profile Matching.

To our knowledge, no attempt has been made previously to
relate large-scale, in silico generated affinity fingerprints and
pharmacological effects, not only target binding affinity. Accord-
ing to our starting hypothesis, a reference panel of proteins must
discriminate between a wide range of compounds in order to be

Figure 4. (A and B) Protein set size evaluation results for the
angiotensin-converting enzyme inhibitory and the cyclooxygenase in-
hibitory effect categories, respectively. Hyperboles are fitted to the data
points representing the mean and the standard deviation of the AUC
values based on a set of 1, 5, 10, 40, 70, 100, and 130 proteins, each
performed three times. AUC values obtained using the complete protein
set (149 proteins) are also shown in the figure for both effects. The
theoretical maximum of AUC is 1.0. (C) Distribution of the number of
proteins required to reach 90% of the maximal obtainable accuracy for
each effect. More than 90% of the studied 177 effects can be sufficiently
classified on the basis of the protein set used for IP generation.
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an effective surface for affinity profiling. We show here that this
discrimination has a strong predictive power for clinical effect
profiles. However, two critical points about the applied metho-
dology could arise, i.e., the usage of in silico calculated scoring
values instead of experimentally determined binding constants
and the low overall correlation between docking scores and
binding constants. First, in vitro gained binding affinity values
suffer from some serious uncertainty due to the possibility of
nonspecific binding of the compound on the receptor and
neglecting the information originated from the weak interactions
in the immeasurable range. In contrast, in the presented DPM
method, these limitations obviously do not exist. Second, the
widely discussed problem of reliability of the calculated scores
can be overcome by using and comparing different docking/
scoring methods as suggested in the recent literature.26�28 We
found that the predictive power of DPM is not influenced
significantly by the applied scoring functions. Furthermore,
docking scores in DPM are used as descriptor elements of the
interaction potency of a compound and not as calculated affinity
values that are compared to actual binding affinities. The uniform
treatment of the compounds on the discriminator surface is more
important in the DPM method than the individual docking
scores that are generally unable to determine the measured
ligand binding affinity for the given protein.28 Due to the
necessity of uniform treatment, conformational changes in the
proteins during ligand binding were banned in this study in order
to apply the same discriminator surface (active sites of the
proteins) for each drug.

Unlike other similarity-based approaches,8,9 no direct topo-
logical similarity information on drugmolecules is involved in the
DPM method; therefore, our approach is able to detect EP
similarities even in the case of limited structural similarity
between compounds. Briem and Kuntz described in an early
work that two-dimensional structural similarity methods resulted
in better bioactivity prediction power compared to a docking-
based interaction fingerprint due to the fact that rigid conformers
of ligands were docked to a very limited number of proteins
(8).29 In contrast, we found that the 2D and 3D structural
information of drugs used in previous approaches yielded limited
EP-prediction power compared to the IP-based DPM method
(data not shown). IPs represent binding potencies of drug
molecules to protein surfaces, including weak interactions.
Binding potency is an essential feature of drugs because, in
organisms, drugs may act on series of strong and weak binding
partners which play important roles in the mechanism of actions
and could be considered as a key factor in polypharmacology.

The DPM method can be improved at many points. As we
presented, several inherently diverse effect categories are
weakly predictable, but this issue can be expectedly solved by
creating more cohesive subgroups based on the individual
cross-validation probability values of the drugs (see Figure S4,
Supporting Information), e.g., pharmacological effects like
“antihypertensive agent” could be handled by the sum of several
target-based subgroups. DPM could be further improved by
introducing ADME properties into the effect profile matrix.
Moreover, different discriminator surfaces can be used for
specific therapeutic categories: protein sets that possess a larger
discriminative effect on a specific effect group than the protein
set used here for general EP prediction.12 Furthermore, an
artificial discriminator surface could be designed and tested in
DPM in order to determine the minimum level of complexity of
these surfaces required for effective predictions. In a future

investigation, it might be an interesting question whether
introducing water molecules in the docking procedure increases
the predictive power of DPM. Finally, nonlinear discrimination
functions might also improve the IP-based effect profile pre-
diction.

Besides network biology, our results can be interpreted from
the viewpoint of pharmacochemistry as well. In this regard, the IP
of a drug is a representative of a complex chemical feature, the 3D
pharmacophore of the small-molecule compound. The observed
high level of correlation between IPs and EPs can be originated in
the common pharmacophore required to yield the physiological
effect through a given mechanism of action. This theory does
not contradict the network point of view; on the contrary, it
emphasizes the importance of complex feature sets that are
required for effect prediction.

The Drug Profile Matching method may be applicable in a
number of ways due to the ability to relate complex interaction
profiles of molecules with their clinical and pharmacological
profiles. First and foremost, it offers an opportunity for sys-
tematic and rapid screening of approved drugs in order to
discover new therapeutic indications and safety risks. More-
over, it can be a valuable aid in the prediction of the pharma-
cological effect profiles of drug candidate molecules with high
probability, thereby offering a novel approach for lead molecule
design and optimization as well. As shown above, the good
predictive power of the method holds out the promise for its use
with marketed drugs or as a preclinical screen, bringing sub-
stantial improvement in the efficacy of future drug development
and expediting the development process from drug discovery to
marketing.
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